Data Compression for Remote Monitoring of Autonomous Vehicles

Rong-Terng Juang

Abstract—Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near future. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords—Autonomous vehicle, data recording, remote monitoring, controller area network.

I. INTRODUCTION

AUTONOMOUS vehicles are expected to offer many benefits, including reduced traffic and parking congestion (and therefore infrastructure savings), independent mobility for low-income people (and therefore reduced need for public transit), increased safety, energy conservation and pollution reductions. However, these advantages will only be significant when autonomous vehicles become common and affordable, probably in the 2040s to 2050s [1]. Currently, The Society of Automobile Engineers (SAE) defined six levels of autonomous driving, according to their relative extent of automation [2]. Level 0 refers to the traditional vehicle, on which the human driver take all aspects of the dynamic driving task. Level 1 refers to the vehicle with driver assistance system, which supports the driver but do not take control. Level 2 defines partly automated driving, where systems can also take control, but the driver remains responsible for operating the vehicle. Level 3 refers to highly automated driving, where the driver can disengage from the driving for extended periods of time in certain situations. Level 4 defines fully automated driving, where the vehicle drives independently most of the time, while the driver remains able to drive but can, for example, takes a nap. Level 5 defines full automation, where the vehicle assumes all driving functions and the people in the vehicle are only passengers.

To achieve full automation, many companies are working on self-driving cars. Unfortunately, some vehicles crashed recently [3], [4]. To help determine what the vehicles are doing before, during and after crashes, self-driving cars are required to equip with data recorders to collect information of driving behavior [5]. Unlike the traditional vehicles, self-driving cars utilize a combination of advanced sensors, such as stereo cameras and long- and short-range radars, and lidars, to monitor and respond to their surroundings. These sensors can generate a huge amount of data per second. Therefore, this paper proposes a method of data compression for remote monitoring of autonomous vehicles. Fig.1 1 shows the system architecture of remote monitoring for self-driving cars. The proposed data recorder is deployed on the autonomous vehicle. Data on the in-vehicle network are compressed and transmitted to the remote center for the purposes of vehicle monitoring and data analysis.

The rest of this paper is organized as follows. Section II presents the system architecture and the proposed scheme. Section III shows the test results. Finally, Section IV provides some concluding remarks.

![Fig. 1 Remote monitoring of autonomous vehicles](image)

R. T. Juang is with the Automotive Research and Testing Center, Taiwan. (phone:886-4-7811222; fax: 886-4-7812336; e-mail: rijuang@atrc.gov.tw)
through a gateway, *i.e.*, the data recorder, which collects all the data from the Ethernet and CAN network. In addition to data storing, the data recorder also transmits the collected data to a remote control center through the 4G cellular network.

Figure 3 shows the software block diagram of the proposed data recording. The input interface is either CAN bus or Ethernet. The data sources include perception module, decision module, control module, lidar, radar, cameras, RTK GPS, IMU, and odometer. The data parser tells if the message is for real-time monitoring or historical data recording. The parameters of the real-time monitoring, including vehicle location, speed, heading, mileage, diagnostic trouble code, etc., are sent to the remote center every second. Meanwhile, the historical data, including all the data on the in-vehicle network, are compressed into files with a period of ten minutes. The historical data files are sent to the remote control center when available.

As the autonomous vehicles generate large amounts of data constantly, the data have to be compressed to facilitate the transmission to the remote center. Figure 4 shows the compression block diagram of the proposed data recording for in-vehicle networks. Figure 5 shows the original time series of the CAN data, which consists of CAN identify (ID), data length code (DLC) and the data. Firstly, the time series data are grouped into a multi-dimensional signal space. Upon the arrival of a CAN message, the new data are mapped onto a time-data two-dimensional space associated with the specific CAN ID, as shown in Fig. 6. Secondly, the multi-dimensional data are sampled based on the differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods.
The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

III. TESTING RESULTS

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

III. TESTING RESULTS

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

III. TESTING RESULTS

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.

The data recorder was deployed on an in-house built self-driving e-golf cart. Figure 8 shows the e-golf cart and the associated modules, including a lidar, a cameras, a HMI, three ultrasonic sensors, a GPS/IMU, a battery management system, electronic chassis modules, a wireless charging module, and a decision module. The e-golf cart provides shuttle service on the campus of ARTC (Automotive Research and Testing Center). As shown in Fig. 9, there are seven stops along the shuttle route. All the information on the heterogeneous network was collected by the data recorder on the vehicle. Then, the data were compressed and sent to a remote center through the 4G cellular network. The real-time data receiver in the figure decodes some selected parameters for vehicle monitoring, while the historical data file receiver aggregates all the data collected at the data recorder. Both the real-time data and the historical data are imported into a database. Meanwhile, a web server provides web pages for users to monitor the vehicles and download the historical data for further analysis. When the autonomous vehicle encounters an unexpected driving environment, the remote operator can send control commands to the vehicle through the remote command transmitter shown in the figure.
IV. CONCLUSIONS

This paper has presented a data recording method for remote monitoring of autonomous vehicles. The time series data on the in-vehicle network are grouped into a multi-dimensional signal space. Upon the arrival of a CAN message, the new data are mapped onto a time-data two-dimensional space associated with the specific CAN ID. Afterwards, the multi-dimensional data are sampled based on the differential sampling. Lastly, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. The data recorder was deployed on an in-house built self-driving e-golf cart, which provides shuttle service on the campus of ARTC. The test results show that the data size can be reduced to 1/7 by using the proposed method.

REFERENCES